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Time to failure of hierarchical load-transfer models of fracture
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The time to failure,T, of dynamical models of fracture for a hierarchical load-transfer geometry is studied.
Using a probabilistic strategy and juxtaposing hierarchical structures of heightn, we devise an exact method to
computeT, for structures of heightn11. BoundingT, for largen, we are able to deduce that the time to failure
tends to a nonzero value whenn tends to infinity. This numerical conclusion is deduced for both power law and
exponential breakdown rules.@S1063-651X~99!03309-7#

PACS number~s!: 64.60.Ak, 64.60.Fr, 05.45.2a, 91.60.Ba
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I. INTRODUCTION

Fracture in heterogeneous materials is a complex phys
problem for which a definite physical and theoretical tre
ment is still lacking. By ‘‘heterogeneous material’’ we un
derstand a system whose breaking properties~e.g., strengths
lifetimes! depend on time and/or space in a random way@1#.
This randomness arises from the many-body interacti
among the constituent parts of the system, each one ha
mechanical properties that can be considered indepen
of—or at least weakly correlated with—the properties
neighboring parts. The term disordered systems is also u
as a collective name for this kind of material. The prese
of disorder alters radically the way the rupture proce
evolves compared to the single-crack growth mechanism
erating in homogeneous materials~such as glass or alloys!.
In heterogeneous material~composites, ceramics, rocks, co
crete! the process of rupture begins with delocalized dam
affecting the bulk of the material, and consisting of an en
mous number of microcracks nucleated at random inside
system. This population of microcracks evolves with time
coalescence and growth of individual microcracks until
final rupture point of the system is reached. In the very fi
stages, the process of coalescence gives rise to a single~or a
few! dominant crack~s! responsible for the macroscopic fai
ure of the material.

The analytical or even complete numerical solution of t
complex problem is prohibitive. Nevertheless, our und
standing of fracture in heterogeneous material has impro
recently with the development of simple algorithms to sim
late the breaking process. Most of these algorithms are b
on percolation theory@3# and include models of random re
sistor networks@4#, spring networks@5#, and beam networks
@6#. The standard way of solving these models is throug
more or less dense sampling of failure space via Monte C
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simulation. But fracture in heterogeneous materials is, from
statistical viewpoint, a process critically dependent on
tails of the failure distribution and these tails are natura
difficult to sample using conventional Monte Carlo method
It is thus very important to develop a set of simple mod
which can be analyzed either analytically or numerical
with precision and with clear asymptotic behavior, in ord
to guide our understanding of more complex models.

The load-transfer models belong to this group of simp
stochastic fracture models amenable to either close analy
or fast numerical solution, and whose output, spanning m
orders of magnitude in sample size, allows a precise cha
terization of the asymptotic behavior. The collective nam
given to this type of model is fiber-bundle models~FBM!,
because they arose in close connection with the strengt
bundles of textile fibers@7,8#. Since Daniels’ and Coleman’
seminal works, there has been a long tradition in the use
these simple models to analyze failure of heterogeneous
terials.

FBM come in two ‘‘flavors,’’ static and dynamic. The
static versions of FBM simulate the failure of materials
quasistatic loading, i.e., by a steady increase in the load o
the system up to its macroscopic failure. One of the ba
outputs is precisely the value of this ultimate strength. Ti
plays no role in these models, loads is the independen
variable, and the strength of each element is considered t
an independent identically distributed random variable.
the other hand, the dynamic FBM simulate failure by stre
rupture, creep-rupture, static-fatigue, or delayed-rupture,
a ~usually! constant load is imposed over the system and
elements break by fatigue after a period of time. The ti
elapsed until the system collapses is the lifetime or time
failure of the set. Time acts as the independent variable,
the lifetime of each element is an independent identica
distributed random quantity.

There are three basic ingredients common to all FB
first, a discrete set ofN elements located on the sites of
d-dimensional lattice; second, a probability distribution f
the failure of individual elements; and, third, a load-trans
2581 © 1999 The American Physical Society
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rule which determines how the load carried by a failed e
ment is to be distributed among the surviving elements in
set.

The most common probability distribution function~sec-
ond ingredient! used to express the breaking properties
individual elements is the Weibull distribution@9#. For the
static cases, where the load,s, is the independent variable
failure statistics are described by the functionP(s)51
2exp$2(s/s0)

r%. Here,s0 is a reference strength andr is
the so-called Weibull index or shape parameter, which
essence controls the variance in the strength thresholds
the dynamic cases, with time as the independent varia
things are more complicated because the failure of each
ment is sensitive to both the elapsed timeand its load his-
tory. The probabilityP„t;s(t)… of a single element failing a
time t after suffering the load historys(t) is of the form@8#

P„t;s~ t !…512expH 2E
0

t

k j@s~t!#dtJ , ~1.1!

wherek j (x), j 51,2, is the hazard rate or breaking rule. T
impart to Eq.~1.1! the commonly observed Weibull behavio
of real materials under constant load, apower-law breaking
rule is used@10#:

k1~s!5n0S s

s0
D r

. ~1.2!

Here,n0 is the hazard rate~number of casualties per unit o
time! under the unit loads0. For constant load, inserting Eq
~1.2! into Eq.~1.1! gives the Weibull probability distribution
function for the dynamic FBM:

P~ t;s!512expH 2n0S s

s0
D r

tJ . ~1.3!

The widespread use of Weibull statistics stems from
experimental fact that real materials follow very close
Weibull probability distribution functions for both th
strength and the time to failure of the individual eleme
@7,8,11,12#.

Besides the power-law breaking rule, Eq.~1.2!, another
popular assumption in composites fracture is theexponential
breaking rule,

k2~s!5f expFhS s

s0
D G , ~1.4!

wheref andh are two positive constants~the amplitude and
the characteristic scale of the exponential function!. This
breaking rule has a theoretical support in the apparent ne
sity of a Boltzmann factor in the load~stress! for any ther-
mally activated process~as fracture at the molecular level
interpreted@11#!. The substitution of Eq.~1.4! into Eq. ~1.1!
does not give a Weibull function. Nevertheless, the est
lished use of the two breaking rules makes it necessar
take both into account, and so we have dedicated Sec.
the discussion of the lifetime of sets under the exponen
breaking rule.

The most critical of the three basic ingredients of all FB
is theload-transfer rule, where a great deal of the physics
the models is hidden. Three end members are of inte
-
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here: the equal load-sharing~ELS! rule, the local load-
sharing~LLS! rule, and the hierarchical load-sharing~HLS!
rule. In the ELS rule, which can be thought of as a me
field approximation, the load supported by failing elements
shared equally among all surviving elements. In the L
rule, the load of failing elements is accommodated by
neighborhood whose exact definition depends on the ge
etry and dimensionality of the underlying lattice. In the HL
rule the scheme of load transfers follows the branches o
fractal ~Cayley! tree with a constant coordination numbe
Common to all three load-transfer modalities is the fact t
broken elements carry no load.

ELS models have been used to predict failure under t
sion in elastic yarns and cables with little or no twist, b
cause in these arrangements the load supported by a fa
fiber or cable strand is shared equally by all the remain
fibers or strands in the bundle. The conjunction of a loo
arrangement and a load under tension facilitates this glo
range load redistribution scheme.

LLS models have their natural field of application in th
failure of composite materials, and more specifically in fib
reinforced composites with brittle fibers embedded in a s
matrix @13#. There, as fiber breaks appear, the matrix ser
the important function of transferring the shear traction g
erated in the matrix at the point of a fiber break to the nei
boring fibers, with most of the load going to the neare
neighbors. This arrangement results in a very short-ra
load redistribution, both laterally across fibers and longitu
nally along the fiber axis.

More important from a geophysical point of view and f
this paper is the HLS rule recently introduced by Turco
and collaborators in the seismological literature@14#. In this
load-transfer modality the scale invariance of the fract
process is directly taken into account by means of a hie
chical load-transfer scheme following the branches of a fr
tal tree. An important property of the HLS scheme is that
zone of stress transfer is equal in size to the zone of failu
and this nicely simulates the Green’s function associa
with the elastic distribution of stress adjacent to a rupt
@15#. The fractal tree structure used to redistribute loads
mere construction useful to envisage the way loads fr
breaking elements are transferred to unbroken element
basic aspect of the topology of the hierarchical structure
the number of elements directly linked together; this defin
the coordination,c, of the tree. That is,c fibers could be
assembled to form a bundle which would behave as if it w
itself a fiber. Then,c of these second-generation fibers cou
themselves be assembled to form a bundle which would
as a third-generation fiber, and so on. This hierarchical
semblage can be continued indefinitely and an indexn is
used to describe the level within the hierarchy or, equi
lently, the height in the tree structure. Son50 refers to the
individual elements in the system,n51 refers to the first
level in the tree, etc. Forc52, n50 implies individual ele-
ments,n51 implies pairs of elements,n52 pairs of pairs of
elements, etc. Thus, annth-order tree with coordination
numberc would containN5cn elements.

Although we would stress below the importance of t
analytical solution of the FBM, it is enlightening to sho
how these models can be solved using Monte Carlo te
niques because that would facilitate the understanding
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TABLE I. Main asymptotic results for the three standard modalities of FBM in the static and dyn
cases.

ELS LLS HLS

Static Critical point No critical point No critical point
sc5e21/r sc}1/ln N sc}1/ln ln N
Daniels@7# Harlow @18# Newman and Gabrielov@22#

Dynamic Critical point No critical point Critical point
Tc51/r

Coleman@10# Kuo and Phoenix@20# This paper
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parts to follow. We will focus on thedynamicFBM, as this
is the type of problem we want to address in this pap
Consider a set ofN elements arranged on the sites of a l
tice. The general Monte Carlo recipe goes as follows:~i!
Assign random lifetimest i to the i 51, . . . ,N individual el-
ements, as drawn from Eq.~1.1! under unit load;~ii ! advance
time an amount equal to the lifetime of the shortest-liv
nonfailed element in the set, sayd; ~iii ! reduce lifetimes of
all remaining elements by an amountk(s i)d, wherek(x) is
either the power-law or the exponential breaking rule;~iv!
transfer load from the failing element to other sound e
ments in the set according to a preset load-transfer rule~ELS,
LLS, or HLS!; ~v! proceed to step~ii ! if at least one elemen
is unbroken, or end if the system has collapsed;~vi! add
together all the individuald ’s to obtain the time to failureT
of that particular realization of the system. This way of a
plying the Monte Carlo method is what we will refer to a
the standard method.

Among the different results that one can obtain from
analytical or numerical solution of the fiber-bundle mod
~for a review, see@2#!, here we are mainly interested in th
asymptotic strength~static FBM! and asymptotic time to fail-
ure ~dynamic FBM! of the system. The asymptotic streng
is defined as the maximum load that an infinite system
support before all its elements break. The asymptotic tim
failure or lifetime is the minimum time one has to wait un
an infinite system collapses by all its elements breaking
fatigue. These are themselves important questions from
engineering point of view. Table I gathers the ma
asymptotic results for the different FBM, including the d
namic HLS model, to which this paper is dedicated. It h
been known since the work of Daniels@7# that the static ELS
fiber-bundle model has a critical point in the sense that for
infinite system there is a zero probability of breaking t
system when applying a loads less than a critical valuesc ,
and a probability equal to 1 to break the system if the app
load is bigger than the critical load. This is valid for an
probability distribution function satisfying some very mi
conditions@7#. The critical strengthsc quoted in Table I is
only valid, however, for a Weibull function. As for the dy
namic ELS model, Coleman@8# proved rigorously a compa
rable result, namely that there exists a critical timeTc below
which an infinite system under dynamic rules has a z
probability of collapsing and above which the system c
lapses with a probability of 1.Tc varies with the assume
probability distribution function, but otherwise the critica
point result is independent of it~the value quoted in Table
is for a power-law breaking rule!. Smith and Phoenix@16#
give a summary of the main asymptotic results for the st
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and dynamic ELS FBM. Regarding the asymptotic propert
of the LLS models, the work of Smith and co-workers and
Harlow, Phoenix, and co-workers has been fundamen
They proved that neither the static nor the dynamic L
FBM have a critical point. For the static case, the strength
the system goes to zero as the size of the system is increa
More specifically,sc}1/lnN ~conjectured by Harlow, Phoe
nix, and Smith@17#; proved by Harlow@18#!. For the dy-
namic case a similar result holds~conjectured by Tierney
@19#; proved by Kuo and Phoenix@20#!. See@21# for a re-
view of the static LLS models.

The static HLS model was shown to lack a critical po
by Newman and Gabrielov@22#. In this case the reduction to
zero of strength in relation to system size is very slow,sc
}1/ln lnN, but strictly speaking the strength of an infini
system is zero. The dynamic HLS model was introduced
the geophysical literature in Ref.@23#. Afterwards, Newman
et al. @15# used this dynamic HLS model with the specifi
aim of finding out if the chain of partial failure events pr
ceding the total failure of the set resemble a log-perio
sequence. This was motivated by the amazing fit of this t
obtained in Ref.@24# to data of the cumulative Benioff strai
released in magnitude.5 earthquakes in the San Francis
Bay area before the October 17, 1989 Loma Prieta ea
quake. In the analysis of@15#, it appeared that, contrary t
the static model, the dynamic HLS model seemed to hav
nonzero time to failure as the size of the system tends
infinity. This issue was also studied in@25# by using a renor-
malization approach. This behavior seems odd because
Table I shows, there is a symmetry, for a specific load tra
fer rule, between the static and the dynamic cases: the
models have a critical point both for the static and the d
namic cases; the LLS models have no critical point behav
either for the static or the dynamic case. The static H
model has no critical point, and so it would seem natural t
the dynamic HLS would not have a critical point either. He
we present an exact iterative method to compute the tim
failure of sets of elements with a hierarchical modality
load transfer.~A preliminary account of the behavior of th
dynamic HLS model under the power-law breaking rule h
been recently published@26#.! Due to the fact that the exac
method is too time consuming to yield useful asympto
results, we also present here rigorous upper and lo
bounds to the lifetime of large dynamic HLS sets. From t
behavior of the lower bound we conclude that the dynam
HLS model has indeed a critical point, that is, its time
failure is nonzero for an infinite system.

This paper is organized as follows. In Sec. II we revie
the continuous formulation of the ELS model given by Co
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man @8#. This is useful for understanding the probabilis
approach used in the rest of the paper. This approach is c
pared with the standard method in a Monte Carlo simulati
to illustrate that both are equivalent. Section III contains
core of the iterative method to exactly calculate the time
failure of dynamical HLS sets. The strategy of the juxtap
sition of configurations is explained and the need of defin
‘‘replica’’ configurations is introduced. This leads to the co
cept ofprimary diagramfrom which the value of thed ’s and
of T, for a givenn, are exactly calculated. From a prima
diagram one obtains an easier one calledreduced diagram,
which is used to build the primary diagram of the next lev
n11. In Sec. IV, aiming at simplification, we introduce th
concept ofeffective diagram, as the averaged form of a pr
mary. In these diagrams each stage of breaking is represe
by a unique effective configuration whose decay width
obtained by an appropriate average of the various de
widths existing in the primary. Depending on the type
means used, upper or lower bounds for theT of the next
height are obtained. So far the power-law breaking rule
used in the quantitative calculations. Section V is devoted
the exponential breakdown rule specifics. Two Appendi
have been added: In Appendix A we detail the number
replicas demanded for a general coordination,c; in Appendix
B, we show the reason why the three types of means use
the averaging effectively work to provide rigorous bound

II. ELS MODEL. THE PROBABILISTIC APPROACH

In Ref. @8#, in the context of his statistical theory for th
time dependence of mechanical breakdown in bundles o
bers at constant total load, Coleman defines an ‘‘id
bundle’’ as one fulfilling precisely the same premises as
ELS model presented in Sec. I. Following the work of th
author, let us callN the size of the bundle~or set! at t50 and
n(t) the number of filaments~or elements! which survive to
t without breaking; the lifetime,T, of the bundle is defined a
the time required forn(t) to reach zero. We will callso the
fixed load attributed to every single element att50. The
hypothesis of the ELS model implies that the actual load i
particular unbroken filament at timet is

s5
soN

n~ t !
. ~2.1!

Thus the lifetime of a very large ideal bundle formed
fibers of equal length,l, may be calculated from

2
dn

dt
5nlk~s!, ~2.2!

wherek(s) is a phenomenological function. The productl k
is called the hazard rate. In polymeric fibers,k can be satis-
factorily represented by an exponential function ofs:

k~s!5
ebs

a
, ~2.3!

wherea andb are parameters that determine the behavio
the fibers under any loads. Equation~2.3! represents the
so-calledexponential breakdown rule. An alternative also
widely used is the so-calledpower-law breakdown rule:
m-
,

e
o
-
g

l

ted
s
ay
f

is
to
s
f

in

fi-
l
e

a

f

k~s!5
1

a S s

so
D r

. ~2.4!

From Eqs.~2.1!, ~2.2!, and~2.3! with x5(bsoN) andn, and
the conditionsn(0)5N andn(T)50, one deduces

T5
a

l Ebso

` dx e2x

x
52

a

l
Ei~2bso!. ~2.5!

Using Eq.~2.4! instead of Eq.~2.3!, one obtains

T5
~a/ l !

r
. ~2.6!

Equation~2.2! is similar to a radioactivity equation in which
lk stands for the decay rate,G, of one nucleus. In the ELS
case it is not of much interest to lose this elegant continu
formulation. However, for other load-transfer schemes, s
as the HLS, this analogy with radioactivity is useful, b
similar continuous differential equations cannot be form
lated anymore. Thus, the discrete version of this probabili
philosophy applicable to any load-transfer scheme was
veloped in Ref.@27# and will be used throughout this pape
It represents an alternative to what we have called the s
dard method@15# commented on in Sec. I, in which th
random thresholds for breaking are assigned at the begin
and the process of breaking is henceforth completely de
ministic. Both points of view are equivalent. In the followin
we will use nondimensional magnitudes. In particular,

~a/ l !51, so51, and bso51. ~2.7!

Note that this would be equivalent to adopting, with the n
tation of Sec. I,no5so5f5h51.

In the probabilistic approach@27#, in each time increment
defined as

d5
1

(
j

G j

, ~2.8!

one element of the sample decays. The indexj runs along all
the surviving elements. Using Eqs.~2.3!, ~2.4!, and~2.7!, we
have

G j5s j
r ~or G j5es j !. ~2.9!

The probability of the specific element,m, to fail is

pm5Gmd. ~2.10!

Equation~2.8! is the ordinary link between the mean tim
interval for one element to decay in a radioactive sample
the total decay width of the sample. The time to failure,T, of
a bundle~set of elements! is the sum of theN d ’s.

It is instructive to apply Eq.~2.8! to the ELS case where
G j does not depend onj because every surviving eleme
bears the same load. Here, in thekth time step, the number o
survivors isnk5N2k and the individual load issk5N/(N
2k). Then for the power-law rule,
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dk5
1

N2k

~N2k!r

Nr
5

~N2k!r21

Nr
,

with k50, . . . ,N21 and

T5 (
k50

N21

dk . ~2.11!

If r52, T5 1
2 (11 1/N). For a general value ofr, using

Stolz’s theorem@28# we find

lim
N→`

T5
~N21!r21

Nr2~N21!r
→ 1

r
, ~2.12!

which coincides with Eq.~2.6!.
When dealing with the exponential breakdown rule, p

ceeding analogously one easily checks that the sum of
series ofd ’s, for sufficiently highN, provides the same resu
as the exponential integral of Eq.~2.5!.

It is also instructive to compare the results obtained fr
Monte Carlo simulations in the calculus ofT in two ways:~a!
by using the standard procedure, i.e., of assigning rand
individual lifetimes at the beginning of each simulation a
proceeding deterministically; or~b! by using a probabilistic
point of view, i.e., from Eq.~2.8! and Eq.~2.10!. This com-
parison is shown in Fig. 1 for HLS sets ofN5128 andN
5512 elements~with c52, r52). Note the significant re-
duction in the dispersion thickness obtained by using
second method. This contrast tends to decrease for grow
N and growingr. Obviously, the Monte Carlo strategy ca
be applied for any modality of load transfer in the framewo
of the probabilistic method. The inconvenience lies in t
very essence of these simulations, i.e., their moderate a
racy and large cost for large sets. In this paper, we will sh
how to apply the probabilistic method to the HLS trans
modality, in order to obtain an exact algebraic method for
lifetimes, and how to explore the asymptotic values ofT
whenN tends to infinity.

FIG. 1. Comparison of Monte Carlo simulations; the broad d
tributions come from using the standard approach, and the thi
distributions come from using the probabilistic approach. The ti
to failure is plotted in dimensionless units.
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he
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III. EXACT ITERATIVE METHOD
FOR HLS DYNAMICAL MODELS

To give a perspective of what is going on in the ruptu
process of a hierarchical set, we have drawn in Fig. 2
three smallest cases for trees of coordinationc52. Denoting
by n the number of levels, or height of the tree, i.e.,N52n,
we have consideredn50, 1, and 2. The integers within pa
rentheses~r! account for the number of failures existing
the tree. When there are several nonequivalent configurat
corresponding to a givenr, they are labeled as (r ,s), i.e., we
add a new indexs. The total load is conserved except at t
end, when the tree collapses. Referring to the high symm
of loaded fractal trees, note that each of the configurati
explicitly drawn in Fig. 2 represents all those that can
brought to coincidence by the permutation of two legs join
at an apex, at any level in the height hierarchy. Hence we
them nonequivalent configurations or merely configuratio
In general, each configuration (r ,s) is characterized by its
probability p(r ,s), (sp(r ,s)51, and its decay width
G(r ,s). The time step for one-element breaking at the stagr
is given by

d r5(
s

p~r ,s!
1

G~r ,s!
. ~3.1!

This is the necessary generalization of Eq.~2.8! due to the
appearance, for the samer, of nonequivalent configuration
during the decay process of the tree. In cases of branch
the probability that a configuration chooses a specific dir
tion is equal to the ratio between the partial decay width
that direction and the total width of the parent configuratio
And the probability of a given configurationp(r ,s) is given
by the sum, extended to all its possible parents, of the pr
uct of the probability of each parent times the probability
choosing that specific direction.

We will compute at a glance thed ’s of Fig. 2 in order to
analyze the general case later. To be specific, we will alw
use r52. For n50, we haveG(0)512 and d051/1251
5T. For n51, G(0)51211252, d05 1

2 ; G(1)522, d1
5 1

4 ; and henceT5 1
2 1 1

4 5 3
4 . For n52, G(0)512112112

-
er
e

FIG. 2. Breaking process for the three smallest trees of coo
nationc52 (N51,2,4). The integers in parentheses~r! represent
the number of breakings that occurred. Theds stand for the time
elapsed between successive individual breakings and the num
under the legs indicate the load they bear.
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11254, d05 1
4 ; G(1)52211211256, d15 1

6 . Now we
face a branching; the probability of the transition (
→(2,1) is 4

6 and the probability of the transition (1
→(2,2) is 2

6 ; on the other hand,G(2,1)52212258
5G(2,2), henced25 4

6 3 1
8 1 2

6 3 1
8 5 1

8 . Finally d35 1
16 and

the addition ofd ’s givesT5 29
48 .

Now we define thereplica of a configuration belonging to
a given n, as the same configuration but with the loa
doubled~this is because we are usingc52). The replica of a
given configuration will be recognized by a prime sign.
other words, (r ,s)8 is the replica of (r ,s). Note that when a
configuration represents the state of complete collapse, it
its replica are the same thing. When dealing with the pow
law breakdown rule, any decay width, partial or total, rela
to (r ,s)8 is automatically obtained by multiplying the corre
sponding value of (r ,s) by the common factorcr52r54.
This also implies thatp(r ,s)5p(r ,s)8. In the exponential
rule, this does not work and the widths of the replicas hav
be specifically calculated~this is explained in Sec. V!. The
need to define the replicas stems from the observation
any configuration appearing in a stage of breakingr of a
given n is built as the juxtaposition of two configurations
the level n21, including also the replicas of the leveln
21 as ingredients of the game. In Fig. 2, one can observe
explicit structure of the configurations ofN54 ~or of N
52) as a juxtaposition of those ofN52 ~or of N51) and its
replicas. From this perspective, we notice that the total nu
ber of configurations appearing in the fracture process o
tree of heightn ~omitting the totally collapsed one!, Nn , is
equal to

Nn5
Nn21~Nn2111!

2
1Nn21 .

In this formula the first term represents all the possible co
binations~with repetition! of pairs of ordinary configurations
of the heightn21. The second term represents the config
rations formed by juxtaposing a collapsed tree of heighn
21 together with any of theNn21 replicas of the previous
height. Thus,

Nn5
Nn21~Nn2113!

2
. ~3.2!

FeedingN051 into Eq. ~3.2!, we obtainN152, N255,
N3520, N45230, N5526 795, N6.3.593108, N7.6.45
31016, etc. It is clear that the amount of configurations
deal with soon constitutes an insurmountable problem.

The single-element breaking transitions in configuratio
of height n can be only of three types. Typea transitions
correspond to the breaking of one element in half of the t
while the other half remains as an unaffected spectator. T
b transitions correspond to the decay of the last surviv
element in one-half of the tree, which provokes its collap
and the corresponding doubling of the load borne by
other half. In these two cases, the transition width coinci
with that already obtained when solving the leveln21. Fi-
nally, typec transitions correspond to the scenario in whi
one-half of the tree has already collapsed and in the o
half one breaking occurs. In this third case, the decay w
is that of a replica of the leveln21, which, as said before, i
nd
r-
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a common factorcr times the ordinary width. This holds fo
any heightn and allows the computation of all the parti
decay widths in a tree of heightn from those obtained in the
heightn21. This is illustrated in Fig. 3 for the three types
transitions for trees withn53 (r52 has been used!.

In Fig. 2 and Fig. 3 we have drawn the different config
rations of lown explicitly, that is, by representing them a
small fractal trees at different stages of damage. It is con
nient, for reasons of economy, to introduce a symbolic no
tion for the configurations so that the complete process
breaking of a tree of heightn adopts a more compact look
This is shown in Fig. 4. There, the different configurations
n53 are labeled by the integers within the boxes. The t
parentheses at their right, with their respective integers,
resent the twon52 juxtaposed configurations forming tha
of leveln53. This information of the previous height will b
called thegenealogy. Time is assumed to flow downward
The numbers accompanying an arrow connecting two bo
stand for the decay width of that transition. Coming back
Fig. 3 one recognizes there that those explicit transitions
nothing else but what in Fig. 4 is represented as block
——→ block 4,2, block 3,1——→ block 4,1, and block
4,1——→ block 5,1. A diagram like that of Fig. 4 is calle
a primary, because it is formed by the juxtaposition of a
possible configurations of the previous height. Th

FIG. 3. Calculation of three partial decay widths inn53, from
the information obtained inn52.
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each configuration belonging to a primary diagram ha
specified genealogy. This allows the computation of all
decay widths of the diagram. As foreseen in Eq.~3.2!, not
counting the totally collapsed configuration,N3520. The
sum of all the partial widths of a parent configuration in
branching is always equal to the total decay width,G, of the
parent. From this primary width diagram one deduces
probability of any primary configuration at any stager of
breaking, and consequentlyd r is obtained using Eq.~3.1!.
Finally, by adding all thed ’s we calculateT(n53).

After a primary diagram has been obtained, i.e., after c
culating all its decay widths, it can be simplified. The idea
to fuse, at eachr, all the configurations having the same to
decay rate,G. Once fused, these configurations have a pr
ability equal to the sum of the old probabilities, and ob
ously maintain the sameG. A primary diagram simplified in
this way will be called areduceddiagram. An element of a
reduced diagram resulting from a fusion has no genealog
the sense that it does not derive from one but from sev
juxtapositions. The genealogy was used in the calculatio
the primary diagram. The later fusion does not require a
other independent information. To illustrate the concept
what a reduced diagram is, let us look again at Fig. 2.
n50 andn51, for eachr there is only one configuration
and hence primary and reduced diagrams are identical.
n52, for r 52 there are two configurations in the prima
diagram, but they have the same width, specifically, for
52, G(2,1)5G(2,2)58. Thus these two configurations ca
be fused and the resulting effective diagram is a chain of
elements, i.e., the branching disappears. Performing this
with the n53 of Fig. 4, one would obtain the reduced di
gram of Fig. 5. The total number of configurations appear
in the reduced diagrams,Nn8 , does not derive from a close
formula as occurs withNn . However, it can easily be de

FIG. 4. Symbolic representation of the gradual rupture of
tree of heightn53 (c52,r52). Time flows downwards.
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rived by means of the computer to obtainN1851, N2852,
N38510, N48536, N585202, N6851669, N78516 408. The
important point is that one can use a reduced diagram of
level n to build a primary of the leveln11 obtaining the
exact information of the new level. After calculating th
primary, by fusing again configurations of equalG, one
would obtain the reduced diagram of the heightn11.

By iterating this procedure, that is, by forming the p
mary diagram of then11 height by juxtaposing the configu
rations of the reduced diagram of the heightn, we can, in
principle, exactly obtain the total time to failure of trees
successively doubled size. In spite of the great simplificat
obtained when using reduced diagrams, the problem of d
ing with a vast amount of configurations still remains. Th
fact eventually blocks the possibility of obtaining exact r
sults for trees high enough as to be able to gauge
asymptotic behavior ofT in HLS sets. A few examples o
exact results, forc52 andr52, areT(n53)5 63451

123200, T(n
54)5 21216889046182831

46300977698976000, T(n55)50.420 823 219 104 814

e

FIG. 5. Result of ‘‘reducing’’ the diagram of Fig. 4.
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The iterative procedure was programed inMATHEMATICA 3.0

with infinite precision and took 10 min CPU time forn55.

IV. BOUNDS FOR THE TIME TO FAILURE
OF THE HLS MODELS

As seen above, whenever in a primary diagram one fu
configurations of the sameG, no information is lost and the
calculation of the time to failure remains exact. In spite
this simplification, the magnitude of the Bayesian proble
becomes huge even when dealing with a moderaten. That is
why we have looked for alternative approximation proc
dures to estimateT. In fact, the most important goal, as e
plained in Sec. I, is to find out if theT of very large HLS sets
tends to zero or, on the contrary, remains finite. With th
points in mind, we have found that a drastic but appropri
simplification of the primary diagrams, in which one ave
ages all the configurations of a givenr into a unique configu-
ration with an effective decay width, leads to obtaining,
the subsequent heights, values ofT systematically lower~or
higher! than the exact result. As this fusion leads to only o
effective configuration, it will have probability 1. The valu
of its decay width will be calledar . Such ‘‘chain’’ diagrams
will be calledeffective diagrams. For n53, this is drawn in
Fig. 6. These effective diagrams, which substitute the pre
ously defined reduced diagrams, are used exactly in the s
way, i.e., to calculate a new~approximate! primary diagram
of the next height. The economy obtained by using effect
diagrams is obvious. As the number of effective configu
tions of a leveln21 is 2n21, the primary of heightn, built
from this effective diagram of heightn21, will have a num-
ber of configurationsN 9, given by

N 95
22n221332n21

2
; ~4.1!

that is, N1952, N2955, N39514, N49544, N595152, N69
5560, N7952144, etc.

It is clear that forn50, 1, and 2, the reduced diagram
and the effective diagrams are identical, i.e.,ar5G(r ). The
point is to definear for n>3 so that theT(n>4) are lower
~or higher! than its exact result.

A trivial option is to define

ar5Gmax~r ! or Gmin~r ! ~4.2!

i.e., by assuming that the only configurations formed dur
the breaking of the tree are those of the maximum~mini-
mum! value ofG. As it is easy to foresee, the use of Eq.~4.2!
leads to poor bounds. In fact, the lower bound goes quic
to zero. We have found that good lower bounds are obtai
by using effective diagrams wherear is the arithmetic mean
~AM !,

ar~AM !5(
s

p~r ,s!G~r ,s!, ~4.3!

or even better by using the geometric mean~GM!,

ar~GM!5)
s

G~r ,s!p(r ,s). ~4.4!
es

f

-

e
e

e

i-
me

e
-

g

ly
dGood higher bounds are obtained from the harmonic m
~HM!,

ar~HM!5
1

(
s

p~r ,s!
1

G~r ,s!

. ~4.5!

In Appendix B, we analyze why bounds result. Note th
given the primary diagram of a heightn, which leads to
cn d ’s, the elements forming the effective diagram defin
with the aim of obtaining higher bounds are exactlyar

FIG. 6. ‘‘Effective’’ diagram forn53.
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51/d r . The fact that thear( i ), i 5AM, GM, and HM, lead
to bounds in the form explained above is in qualitative co
cordance with the inequality

Gmin~r !<ar~HM!<ar~GM!<ar~AM !<Gmax~r !,
~4.6!

which is always a mathematical fact. The bounds obtai
from these formulas forc52,r52 are plotted in Fig. 7, to-
gether with points representing Monte Carlo results. As
bounds based on the GM and on the HM are the most s
gent, they will be calledTl and Th , respectively. The de
tailed behavior ofTl has been analyzed in a log-normal pl
of Tl2Tl ,` against the numbern of levels of the tree.Tl ,` is
a constant obtained from a fit of the data points to the ex
nential function ae2b(n2n0) shifted downwards by this
amountTl ,` (a, b, andn0 are three fitting parameters of n
interest here!. We have performed a careful sensitivity ana
sis of the four-parameter exponential fitting because the
cess of this exponential decay to a nonzero limit is the h
mark of the claim. Table II recordsTl ,` obtained from an
exponential fit to the lastk data points. The firstTl ,` column
is for a fit using up to a maximum level ofn520 ~hence the
notationnmax in the table!; the secondTl ,` column is for the
same fit but dropping then520 value; for the thirdTl ,`
column we have also dropped then519 data point. It is clear
from the trend in the threeTl ,` columns that a saturatio
towards Tl ,`50.325 3760.000 01 occurs when using onl
information of big trees to perform the nonlinear fitting.
similar analysis ofTh leads toTh,`50.339 8460.000 01.
The quality of this exponential fit is also shown in Fig.
Similar fittings of the Monte Carlo data points are inconc
sive, due to the intrinsic noisiness of the MC results and
limited size of the simulated sets (N,216 elements!. What

FIG. 7. Dimensionless lifetime,T, for a fractal tree of heightn.
The small circles are obtained from Monte Carlo simulations. Lin
4 and 1 are higher bounds based onGmin and the HM, respectively
Lines 2, 3, and 5 are lower bounds based on the GM, AM,
Gmax, respectively.
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this result implies is that a system with a hierarchical sche
of load transfer and a power-law breaking rule (c52,r52)
has a time to failure for sets of infinite size,T` , such that
0.325 37<T`<0.339 84. Thus, there is an associated z
probability of failing for T,T` and a probability equal to 1
of failing for T.T` . The critical point behavior is thus nu
merically confirmed.

V. EXPONENTIAL BREAKING RULE

When dealing with the exponential breaking rule in t
probabilistic approach, one has to use Eq.~2.3! for the haz-
ard rate function. For the specific value of the parameter
fixed in Eq.~2.7!, we have

G j5es j . ~5.1!

s

d

TABLE II. Sensitivity analysis of the exponential decay fittin
to the lower bound results.

nmax520 nmax519 nmax518
k Tl ,` k Tl ,` k Tl ,`

19 0.32575 18 0.32579 17 0.32585
18 0.32551 17 0.32553 16 0.32555
17 0.32541 16 0.32542 15 0.32542
16 0.32537 15 0.32537 14 0.32538
15 0.32536 14 0.32536 13 0.32536
14 0.32536 13 0.32536 12 0.32536
13 0.32536 12 0.32536 11 0.32536
12 0.32537 11 0.32537 10 0.32536
11 0.32537 10 0.32537 9 0.32537
10 0.32537 9 0.32537 8 0.32537
9 0.32537 8 0.32537 7 0.32537
8 0.32537 7 0.32537 6 0.32537
7 0.32537 6 0.32537 5 0.32537
6 0.32537 5 0.32537
5 0.32537

FIG. 8. Visualization of the exponential fittings to the resu
obtained by using geometric and harmonic means.
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The problem with this breaking rule is that the values of
decay widths appearing in a diagram where the loads
doubled, i.e., in a diagram replica, are not obtained by m
tiplying the normal ones by a fixed constant, as occur
with the power-law breaking rule. This is easily checked
Fig. 9, where the primary diagram forn52 and its replica
are shown. The notation is equal to that of Sec. II. The val
of the decay widths here are dictated by Eq.~5.1!. Several
comments are in order. We see that the structure of the
grams is equal to those appearing for the power-law c
because this is independent of the breaking rule assume
Fig. 9~b! we have drawn explicitly a replica, that is, a di
gram in which the system instead of starting with individu
loads, so51, starts with doubled individual loads,so8
52so52. We also see that, just in the same way as
quantitative calculation of the primary of Fig. 9~a! required
the knowledge of the information of the previous height a
of its replicas, the calculation of the diagram of Fig. 9~b!
requires the knowledge of the primed elements and
double-primed elements~i.e., with loads multiplied by 4) of
the previous height. Thus, suppose that we want to calcu
T up to the heightn54. This demands the knowledge of th
reduced diagram ofn53 and of its replica. We will denote
them by$3% and $3%8. To obtain$3% we need to know$2%
and$2%8, and to obtain$3%8 we need to know$2%8 and$2%9.
Going backwards up ton50, we observe that the scheme
information needed looks like the following triangular arra

$0%5e $0%85e2 $0%95e4 $0%-5e8 $0%-85e16

$1% $1%8 $1%9 $1%-

$2% $2%8 $2%9

$3% $3%8

$4%

In other words, to obtain theT of a given heightn, we
have to explicitly calculate the primary diagrams of the p
vious values ofn, starting fromn50, up to a loadingn times
the usual diagram withso51. The primary diagrams of low
n are calculated at once, hence the extra work with respe
the power-law case is not too much. When explaining

FIG. 9. Primary diagrams for the exponential breaking r
(n52).
e
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above-mentioned triangular array, we were referring to ex
primary diagrams, taking for granted that our aim was
obtain exact results. Obviously this changes if our aim is
calculation of bounds; then one would proceed by averag
widths for eachr, that is, by calculating means and dealin
with effective diagrams.

In Fig. 10, we have drawn the lifetimes,T, for trees of
heightn. The circles are results obtained from Monte Ca
simulations. For the exponential breaking rule, the low
bound based on the arithmetic mean, curve~3! goes to zero.
Thus the only lower bound that remains useful is that ba
on the geometric mean. Again, it will be calledTl . By fitting
the dataTl by an exponential function of the formTl5Tl ,`
1ae2b(n2no), we observe a clean saturation of th
asymptotic time to failure towards Tl ,`50.052 85
70.000 01; analogously, we obtainTh,`50.088 25
70.000 01. Hence, the critical point behavior is also nume
cally confirmed for the exponential breaking rule.

VI. CONCLUSIONS

In this paper the time to failure,T, of hierarchical load-
transfer models of fracture has been studied. Initially
have explained in detail the so-called probabilistic appro
to load-transfer dynamical models as opposed to the stan
approach, in which random lifetimes are assigned to the
ements of the set and the process of fracture evolves d
ministically. We have emphasized that when viewed fro
the probabilistic point of view, the calculation ofT is analo-
gous to the computation of the total decay time of a rad
active sample. In fact, the terminology of radioactivity a
pears throughout this paper. We have shown that
calculation of T, using Monte Carlo simulations, has
smaller dispersion if one adopts the probabilistic approac

Then, we have devised an exact method to computeT of

FIG. 10. Results forT from trees of heightn, with the exponen-
tial breaking rule. The small circles correspond to Monte Ca
simulations. Lines 2 and 3 correspond to lower bounds based
GM and AM, respectively.
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hierarchical structures of sizeN5cn. The number of ele-
ments of the set isN, c is the coordination of the tree, andn
the height of the fractal tree. The method is iterative, i.e.,
a given c it allows the computation of a tree of heightn
11 once one has calculated a tree of heightn. In this con-
text, the sentence ‘‘a tree is calculated’’ means that o
knows the value of all the partial decay widths between
possible configurations appearing during the breaking p
cess of that tree. Once this information is known, one ea
calculates the probability of reaching each configuration,
the individual values of eachd, i.e., the one-element break
ing time. The key of the method derives from the observat
that the structure of the configurations of then11 type is a
mere juxtaposition ofc configurations of then type. In this
juxtaposition, the so-called replicas also play a role. T
quantitative information of how replica configurations b
have is explained for the two relevant breaking rules:
power law and the exponential. In the power-law break
rule, any decay width of a replica is just a common fac
times the original value. In the exponential breaking rule,
the contrary, the decay widths of replicas have to be in
vidually calculated.

The iterative process, including the information of t
replicas, can be easily processed by a computer. It allows
exact calculation ofT for moderate heightsn. An exact sim-
plification, denoted as reduction, is introduced to dimin
the magnitude of the information to deal with. But even w
the reduction trick, it is difficult to surpass, sayn57 for c
52. Higher values of the coordination imply smaller valu
for the accessible height.

Thus we conclude that exploring the behavior ofT, for
large n, dealing with exact results, is impossible. For th
reason we have turned our interest towards develop
simple approximate methods which can, however, prov
interesting information on the asymptotic value ofT. In this
context appears the idea of obtaining bounds forT. It is
found that by performing adequate averages of the de
widths appearing at each stage of breaking of a heightn, the
value ofT obtained in the next heightn11 is systematically
lower ~or higher! than what the exact result would be. In on
Appendix we have given details of why bounds result. As
results obtained from the bounds reach values beyonn
517 (c52), one is able to explore their asymptotic beha
ior by a careful exponential fitting, which provides clear n
merical evidence~although nonrigorous! that for c52, T
tends to a nonzero value whenn tends to infinity. This con-
clusion is obtained for both the power-law and the expon
tial breaking rules. For the power-law hazard rate, a pr
was given in@29#. Invoking conventional universality-clas
arguments, one deduces that this nonzero limit holds for
erarchical structures of any coordination.
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APPENDIX A: ON THE REPLICAS

We have seen in Sec. III that the knowledge of the
duced configuration of a leveln21 is not enough to obtain
the primary diagram of the leveln; we also have to know the
replica of then21 level. Expressed in the singular, this se
tence is misleading. In fact, it only holds forc52. One can
easily check that for a generalc, the number of replicas
required,m, is

1<m<~c21!. ~A1!

In the case of the power-law breaking rule, any decay wi
of these replicas would be obtained by multiplying its norm
value by the factor

S c

c2mD r

, ~A2!

while as seen in Sec. V, the exponential breaking rule
mands the individualized calculations of each replica, w
its corresponding extra loading. As an example, beyond
usualc52, let us consider for the casec54 the process of
breaking up to the collapse of the two minimum treesn50
andn51. Using a self-explanatory notation, we have

We see that the solution of the heightn51, demands the
information of the decay width of block 1 but also that
block 3

4 , of block 2, and of block 4; i.e., forc54 the iterative
method requires the knowledge of three replicas, as fores
in Eq. ~A1!.

APPENDIX B: ON WHY BOUNDS RESULT

Following the arguments of Secs. III and IV, one eas
sees that the firstd in which there must be a discrepanc
between the exact result and the approximate results com
from the use of effective diagrams is thed3 of n54. For c
52, r52, we obtain

d3~HM!5
128

2893
50.044 244 7,

d3~exact!5
17

385
50.044 155 8,

d3~GM!5
1

3 F 1

11
1

1

81202/53143/5G50.044 107 4,

~B1!

d3~AM !5
59

1342
50.0439 642.
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This results from the fusion of the two configurations blo
3,1 and block 3,2 of Fig. 5, which have a differentG. To
clarify why bounds result, let us analyze this point from
general perspective. In Fig. 11 is drawn the top of a redu
diagram of height, say,n, and at its right the correspondin
effective diagram. We assumeG1ÞG2 , a25g11g2, and i
5AM, GM, or HM,

a3, AM5
g1

a2
G11

g2

a2
G2 ,

a3, GM5G1
g1 /a2G2

g2 /a2 , ~B2!

a3, AM5
1

S g1

a2
D 1

G1
1S g2

a2
D 1

G2

.

From the reduced diagram we obtain the top of the co
sponding primary of the heightn11. This is shown in Fig.
12, and from the effective diagram one obtains the top of
primary shown in Fig. 13. Now let us compute the exactd3
coming from Fig. 12 to be compared with that~approximate!
coming from Fig. 13. In Fig. 12, we have

p~3.1!5
a1

a01a1

g1

a01a2
,

p~3.2!5
a1

a01a1

g2

a21a2
,

p~3.3!5
a0

a01a1
1

a1

a01a1

a0

a21a2
.

FIG. 11. Top of a failure diagram down to the fourth dec
stage.~a! represents the reduced diagram and~b! the corresponding
effective diagram.
d

-

e

Thus

d3~exact!5p~3.1!
1

a01G1
1p~3.2!

1

a01G2

1p~3.3!
1

a11a2
. ~B3!

Analogously, in Fig. 13,

p~3.1!5
a1

a01a1

a2

a01a2
,

p~3.2!5
a0

a01a1
1

a1

a01a1

a0

a21a2
,

and

FIG. 12. Top of the primary diagram built from the reduce
diagram drawn in Fig. 11~a!.

FIG. 13. Top of the primary diagram built from the effectiv
diagram drawn in Fig. 11~b!.
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d3,i5p~3.1!
1

a3,i1a0
1p~3.2!

1

a11a2
. ~B4!

As the third term of Eq.~B3! coincides with the second o
Eq. ~B4!, let us reorder Eq.~B3!, giving

d3~exact!2p~3.3!
1

a11a2

5
a1

~a01a1!~a01a2! S g1

a01G1
1

g2

a01G2
D

and similarly in Eq.~B4!, obtaining

d3,i2p~2.2!
1

a11a2
5

a1a2

~a01a1!~a01a2! S 1

a3,i1a0
D .

To simplify the comparison, let us define two new function

D3~exact![S d3~exact!2p~3.3!
1

a11a2
D ~a011!~a01a2!

a1

5
g1

a01G1
1

g2

a01G2
, ~B5!

D3~ i ![S d3,i2p~2.2!
1

a11a2
D ~a011!~a01a2!

a1

5
a2

a01a3,i
. ~B6!

Thus, theD ’s represent thed ’s after adding an equal term
and multiplied by an equal factor. It is interesting to obse
the effect produced by the fusion of block 3,1 and block
from an algebraic point of view: the sum of the two fractio
of Eq. ~B5! has converted into the fraction at the right of E
~B6!. In the case ofG15G2 , D3~exact!5D3( i ). In other
words, if G15G2 that fusion is exact.

To deal with the arithmetic mean, let us define

f ~x!5
a2

ao1x
~B7!

(ao ,a2.0), which is concave; this implies thatf (l1G1
1l2G2)<l1 f (G1)1l2 f (G2), where l1[g1 /a2 , l2
[g2 /a2 , l11l251, and therefore
y

,

e
2

.

a2

a01Fg1

a2

1

G1
1

g2

a2

1

G2
G <

g1

a01G1
1

g2

a01G2
,

which means that D3(AM) <D3(exact) and therefore
d3(AM) <d3(exact).

To deal with the geometric mean, let us in Eq.~B7! make
the change of variablez5 ln x, then

f ~x!5
a2

a21x
[g~z!5

a2

a01ez
,

which is also a concave function inz. Hence we have

l1

a2

a21ez1
1l2

a2

a21ez2
>

a2

a01e(p1z11p2z2)
;

g1

a01G1
1

g2

a21G2
>

a2

a01~eln z1!l1 ~eln z2!l2
5

a2

a01G1
p1G2

p2
.

ThusD3(GM)<D3(exact) andd3(GM)<d3(exact).
Finally, for the higher bound we will make in Eq.~B7! the

change of variablez51/x:

f ~x!5
a2

a21x
[h~z!5

a2z

a0z11
.

h(z) is a convex function inz, therefore

h~l1z11l2z2!>l1h~z1!1l2h~z2!,

and in terms of our ordinary variables this implies

D3~HM![ f S 1

p1

G1
1

p2

G2

D >p1 f ~G1!1p2 f ~G2!

5D3~exact!

and henced3(HM)>d3(exact).
Note that the argument presented is valid for thed3 of any

n of coordinationc52 and for both the power-law breakin
rule and for the exponential breaking rule.
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